Axiom
An axiom is a sentence or proposition that is taken for granted as true, and serves as a starting point for deducing other truths. In many usages axiom and postulate are used as synonyms.
In certain epistemological theories, an axiom is a self-evident truth upon which other knowledge must rest, and from which other knowledge is built up. An axiom in this sense can be known before one knows any of these other propostions. Not all epistemologists agree that any axioms, understood in that sense, exist.
In logic and mathematics, an axiom is not necessarily a self-evident truth, but rather a formal logical expression used in a deduction to yield further results. To axiomatize a system of knowledge is to show that all of its claims can be derived from a small set of sentences that are independent of one another. This does not imply that they could have been known independently; and there are typically multiple ways to axiomatize a given system of knowledge (such as arithmetic).
Etymology
The word axiom comes from the Greek word αξιωμα (axioma), which means that which is deemed worthy or fit or that which is considered self-evident. The word comes from αξιοειν (axioein), meaning to deem worthy, which in turn comes from αξιος (axios), meaning worthy. Among the ancient Greek philosophers an axiom was a claim which could be seen to be true without any need for proof.
Early Greeks
The logico-deductive method whereby conclusions (new knowledge) follow from premises (old knowledge) through the application of sound arguments (syllogisms, rules of inference), was developed by the ancient Greeks, and has become the core principle of modern logic and mathematics. Tautologies excluded, nothing can be deduced if nothing is assumed. Axioms and postulates are the basic assumptions (or starting points) underlying a given body of deductive knowledge. They are accepted without demonstration or proof. All other assertions (theorems, if we are talking about mathematics) must be proven with the aid of these basic assumptions. However, the interpretation of mathematical knowledge has changed from ancient times to the modern, and consequently the terms axiom and postulate hold a slightly different meaning for the present day mathematician, then they did for Aristotle and Euclid.
The ancient Greeks considered geometry as just one of several sciences, and held the theorems of geometry on par with scientific facts. As such, they developed and used the logico-deductive method as a means of avoiding error, and for structuring and communicating knowledge. Aristotle's posterior analytics is a definitive exposition of the classical view.
An “axiom”, in classical terminology, referred to a self-evident assumption common to many branches of science. A good example would be the assertion that
When an equal amount is taken from equals, an equal amount results.
At the foundation of the various sciences lay certain additional hypotheses that were accepted without proof. Such a hypothesis was termed a postulate. While the axioms were common to many sciences, the postulates of each particular science were different. Their validity had to be established by means of real-world experience. Indeed, Aristotle warns that the content of a science cannot be successfully communicated, if the learner is in doubt about the truth of the postulates.
The classical approach is well illustrated by Euclid's elements, where a list of axioms (very basic, self-evident assertions) and postulates (common-sensical geometric facts drawn from our experience), are given.
- Axiom 1: Things which are equal to the same thing are also equal to one another.
- Axiom 2: If equals be added to equals, the wholes are equal.
- Axiom 3: If equals be subtracted from equals, the remainders are equal.
- Axiom 4: Things which coincide with one another are equal to one another.
- Axiom 5: The whole is greater than the part.
- Postulate 1: It is possible to draw a straight line from any point to any other point.
- Postulate 2: It is possible to produce a finite straight line continuously in a straight line.
- Postulate 3: It is possible to describe a circle with any center and distance.
- Postulate 4: It is true that all right angles are equal to one another.
- Postulate 5: It is true that, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, intersect on that side on which are the angles less than the two right angles.
Modern developments
A lesson learned by mathematics in the last 150 years is that it is useful to strip the meaning away from the mathematical assertions (axioms, postulates, propositions, theorems) and definitions. This abstraction, one might even say formalization, makes mathematical knowledge more general, capable of multiple different meanings, and therefore useful in multiple contexts.
Structuralist mathematics goes further, and develops theories and axioms (e.g. field theory, group theory, topology, vector spaces) without any particular application in mind. The distinction between an “axiom” and a “postulate” disappears. The postulates of Euclid are profitably motivated by saying that they lead to a great wealth of geometric facts. The truth of these complicated facts rests on the acceptance of the basic hypotheses. However by throwing out the Euclid's fifth postulate, we get theories that have meaning in wider contexts, hyperbolic geometry for example. We must simply be prepared to use labels like “line” and “parallel” with greater flexibility. The development of hyperbolic geometry taught mathematicians that postulates should be regarded as purely formal statements, and not as facts based on experience.
Modern mathematics formalizes its foundations to such an extent that mathematical theories can be regarded as mathematical objects, and mathematics itself can be regarded as a branch of logic. Gottlob Frege, Bertrand Russell, Henri Poincaré, David Hilbert, and Kurt Gödel are some of the key figures in this development.
In the modern understanding, a set of axioms is any collection of formally stated assertions from which other formally stated assertions follow by the application of certain well-defined rules. In this view, logic becomes just another formal system. A set of axioms should be consistent; it should be impossible to derive a contradiction from the axiom. A set of axioms should also be non-redundant; an assertion that can be deduced from other axioms need not be regarded as an axiom.
It was the early hope of modern logicians that various branches of mathematics, perhaps all of mathematics, could be derived from a consistent collection of basic axioms. An early success of the formalist program was Hilbert's formalization of Euclidean geometry, and the related demonstration of the consistency of those axioms.
In a wider context, there was an attempt to base all of mathematics on Cantor's set theory. Here the emergence of Russell's paradox, and similar antinomies of naive set theory raised the possibility that any such system could turn out to be inconsistent.
The formalist project suffered a decisive setback, when in 1931 Gödel showed that it is possible, for any sufficiently large set of axioms (Peano's axioms, for example) to construct a statement whose truth is independent of that set of axioms. As a corollary, Gödel proved that the consistency of a theory like Peano arithmetic is an improvable assertion within the scope of that theory.
It is reasonable to believe in the consistency of Peano arithmetic because it is satisfied by the system of natural numbers, an infinite but intuitively accessible formal system. However, at present, there is no known way of demonstrating the consistency of the modern Zermelo-Frankel axioms for set theory. The axiom of choice, a key hypothesis of this theory, remains a very controversial assumption.
Non-logical axioms
Non-logical axioms are formulas that play the role of theory-specific assumptions. Reasoning about two different structures, for example the natural numbers and the integers, may involve the same logical axioms; the non-logical axioms aim to capture what is special about a particular structure (or set of structures, such as groups). Thus non-logical axioms, unlike logical axioms, are not tautologies. Another name for a non-logical axiom is postulate.
Almost every modern mathematical theory starts from a given set of non-logical axioms, and it was thought that in principle every theory could be axiomatized in this way and formalized down to the bare language of logical formulas. This turned out to be impossible and proved to be quite a story (see below); however recently this approach has been resurrected in the form of neo-logicism.
Non-logical axioms are often simply referred to as axioms in mathematical discourse. This does not mean that it is claimed that they are true in some absolute sense. For example, in some groups, the group operation is commutative, and this can be asserted with the introduction of an additional axiom, but without this axiom we can do quite well developing (the more general) group theory, and we can even take its negation as an axiom for the study of non-commutative groups.
Thus, an axiom is an elementary basis for a formal logic system that together with the rules of inference define a deductive system.
Basic theories, such as arithmetic, real analysis and complex analysis are often introduced non-axiomatically, but implicitly or explicitly there is generally an assumption that the axioms being used are the axioms of Zermelo–Fraenkel set theory with choice, abbreviated ZFC, or some very similar system of axiomatic set theory, most often Von Neumann–Bernays–Gödel set theory, abbreviated NBG. This is a conservative extension of ZFC, with identical theorems about sets, and hence very closely related. Sometimes slightly stronger theories such as Morse-Kelley set theory or set theory with a strongly inaccessible cardinal allowing the use of a Grothendieck universe are used, but in fact most mathematicians can actually prove all they need in systems weaker than ZFC, such as second order arithmetic.
Geometries such as Euclidean geometry, projective geometry, symplectic geometry. Interestingly, one of the results of the fifth Euclidean axiom being a non-logical axiom is that the three angles of a triangle do not by definition add to 180°. Only under the umbrella of Euclidean geometry is this always true.
The study of topology in mathematics extends all over through point set topology, algebraic topology, differential topology, and all the related paraphernalia, such as homology theory, homotopy theory. The development of abstract algebra brought with itself group theory, rings and fields, Galois theory.
This list could be expanded to include most fields of mathematics, including axiomatic set theory, measure theory, ergodic theory, probability, representation theory, and differential geometry.
Arithmetic
The Peano axioms are the most widely used axiomatization of first order arithmetic. They are a set of axioms strong enough to prove many important facts about number theory and they allowed Gödel to establish his famous second incompleteness theorem.
Euclidean geometry
Probably the oldest, and most famous, list of axioms are the 4 + 1 Euclid's postulates of plane geometry. This set of axioms turns out to be incomplete, and many more postulates are necessary to rigorously characterize his geometry (Hilbert used 23).
The axioms are referred to as "4 + 1" because for nearly two millennia the fifth (parallel) postulate ("through a point outside a line there is exactly one parallel") was suspected of being derivable from the first four. Ultimately, the fifth postulate was found to be independent of the first four. Indeed, one can assume that no parallels through a point outside a line exist, that exactly one exists, or that infinitely many exist. These choices give us alternative forms of geometry in which the interior angles of a triangle add up to less than, exactly, or more than a straight line respectively and are known as elliptic, Euclidean, and hyperbolic geometries.
Deductive systems and completeness
A deductive system consists, of a set of logical axioms, a set of non-logical axioms, and a set rules of inference. A desirable property of a deductive system is that it be complete. A system is said to be complete if, for any statement that is a logical consequence of the set of axioms of that system, there actually exists a deduction of the statement from that set of axioms. This is sometimes expressed as "everything that is true is provable", but it must be understood that "true" here means "made true by the set of axioms", and not, for example, "true in the intended interpretation". Gödel's completeness theorem establishes the completeness of a certain commonly-used type of deductive system.
Note that "completeness" has a different meaning here than it does in the context of Gödel's first incompleteness theorem, which states that no recursive, consistent set of non-logical axioms of the Theory of Arithmetic is complete, in the sense that there will always exist an arithmetic statement such that neither that statement nor its negation can be proved from the given set of axioms.
There is thus, on the one hand, the notion of completeness of a deductive system and on the other hand that of completeness of a set of non-logical axioms. The completeness theorem and the incompleteness theorem, despite their names, do not contradict one another.
Further discussion
Early mathematicians regarded axiomatic geometry as a model of physical space, and obviously there could only be one such model. The idea that alternative mathematical systems might exist was very troubling to mathematicians of the nineteenth century and the developers of systems such as Boolean algebra made elaborate efforts to derive them from traditional arithmetic. Galois showed just before his untimely death that these efforts were largely wasted. Ultimately, the abstract parallels between algebraic systems were seen to be more important than the details and modern algebra was born. In the modern view we may take as axioms any set of formulas we like, as long as they are not known to be inconsistent.
External links
All links retrieved August 23, 2023.
General Philosophy Sources
- Stanford Encyclopedia of Philosophy
- Paideia Project Online
- The Internet Encyclopedia of Philosophy
- Project Gutenberg
Credits
New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:
The history of this article since it was imported to New World Encyclopedia:
Note: Some restrictions may apply to use of individual images which are separately licensed.